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In this paper we study the transient behavior of the MGE L/MGEM/1 queueing system, 
where MGE is the class of mixed generalized Erlang distributions which can approximate 
an arbitrary distribution. We use the method of stages combined with the separation of 
variables and root finding techniques together with linear and tensor algebra. We find 
simple closed form expressions for the Laplace transforms of the queue length distribution 
and the waiting time distribution under FCFS when the system is initially empty and the 
busy period distribution. We report computational results by inverting these expressions 
numerically in the time domain. Because of the simplicity of the expressions derived our 
algorithm is very fast and robust. 
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1. Introduction 

Transient and busy period analysis in queueing models have long been 
considered as very difficult problems. Yet, in many situations it is very important 
to study the transient behavior of queueing systems. For example, systems often 
encounter transient behavior due to exogenous changes, such as the opening or 
closing of a queueing system or the application of a new control. Furthermore,  
even in systems with time homogeneous behavior the convergence to steady 
state is so slow that the equilibrium behavior is not indicative of system 
behavior. Examples from practical situations, in which transient phenomena  are 
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important, include manufacturing systems with frequent start up periods and 
transportation systems with time varying demand (for example airport runway 
operations in major airports). 

Analytical investigations of the transient behavior of queueing systems are 
very rare, mainly because of the complexity involved. For the M / M ~ 1  queue 
expressions for the queue length probabilities are known as sums of modified 
Bessel functions (see Gross and Harris [6]). An indication of the interest of the 
research community in transient behavior of queues is the recent work of Abate 
and Whitt [1] for the M / M ~ 1  queue. 

In the last decade, work on the transient behavior of queueing systems has 
concentrated on numerical techniques. This change in emphasis was primarily 
motivated by the analytical complexity of the problems involved. The two 
principal methods are the randomization technique introduced by Grassmann 
[5] and numerical integration methods of the underlying Kolmogorov differential 
equations (see Gross and Harris [6], section 7.3.2 and references therein). 

In this paper we study various transient performance characteristics of the 
M G E L / M G E M / 1  system, which is an important special case of the G I / G / 1  
queue. In a sequel paper (Bertsimas et al. [3]) we formulate the problem of 
finding simultaneously the waiting time distribution and the busy period distri- 
bution of the G I / G / 1  queue with arbitrary distributions as a Hilbert problem. 
The MGE, which is described in some detail in section 2, is the class of mixed 
generalized Erlang distributions, which is dense in the space of all distributions 
and can approximate arbitrarily closely every distribution at the expense of 
requiring a large number of stages. For a discussion of the properties of the 
MGE class see Bertsimas [2]. We study the queue length, the waiting time and 
the busy period distribution. We use the separation of variables technique 
together with root finding techniques to establish closed form expressions for 
the Laplace transform of the distributions under study (queue length, waiting 
time, busy period). The advantage of these closed form expressions is that they 
are relatively simple and can be used for numerically inverting them in the time 
domain. In fact, in section 6 we report computational results for inverting 
numerically the transform of the busy period, the queue length and the waiting 
time distribution. 

These expressions also explain the difficulty that the research community has 
had over the years in establishing expressions for the distributions we study in 
the time domain. Despite their simplicity in the transform domain, our expres- 
sions involve roots of polynomial equations. In general, these roots can not be 
computed analytically and even if they are known they are complicated enough 
to make their analytic inversion extremely complicated if not impossible. 

The paper is structured as follows. In section 2 we describe the MGE 
distribution and the notation we use. In section 3 we derive closed form 
expressions for the transform of the queue length distributions when the system 
is initially empty. In section 4 we find an explicit expression for the busy period 
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~ 2  ~qM 
Fig. 1. The MGE M class of distributions. 

distribution while in section 5 we analyze the waiting time distribution under  
FCFS. In section 6 we describe the algorithm to invert numerically the closed 
form expressions derived in the previous sections and also report  some prelimi- 
nary computat ional  results. The final section contains some concluding remarks. 

2. Model formulation and notation 

The general  Coxian class C n was introduced in Cox's [4] pioneering paper. It 
consists of a series of exponential stages as shown in fig. 1. It should be noted 
that this stage representat ion of the Coxian distribution is purely formal in the 
sense that the branching probabilities q, can be negative and the rates/x i can be 
complex numbers.  The mixed generalized Erlang distribution (MGE) is a 
Coxian distribution, where  we assume that the probabilities qi are non-negative 
and the ra tes /x  i are reals. As a result, the mixed generalized Erlang distribution 
has a valid probabilistic interpretation, which is further exploited in this paper. 

To analyse the model  we conceive of the arrival process as an arrival timing 
channel  (ATC) consisting of L consecutive exponential stages with rates A1, 
A2, . . . ,  A L and with probabilities Pl, P2 , - . . ,  PL = 1 of entering the system after 
the completion of the 1st, 2nd , . . . ,  L th  stage. We remark  that as soon as a 
customer in the A T C  enters the system a new customer arrives at stage 1 of the 
ATC. For  the service time distribution we consider as above a service-timing 
channel  (STC) consisting of  M consecutive exponential stages with rates /zl, 
].t.2,...,/A, M and with probabilities ql, q2 , . . - ,  QM = 1 of leaving the system. 

In the time domain we introduce the random variables: 

N(t) = The number  of customers in the system at time t. 
Ra(t) = The ATC stage currently occupied by the arriving customer at time t. 
Rs(t) = The STC stage currently occupied by the customer who is being served 

at t ime t. 
W(t) = The waiting time of a customer arriving at time t. 

With the above definitions the system can be formulated as a continuous time 
Markov chain with infinite state space: 

{ (N( t ) ,  Ra(t),  Rs(t)) , X ( t )  = 0 ,  1 , . . . ,  Ra(t  ) = 1, 2 , . . . , L ,  

Rs(t ) = 1, 2 , . . . , M } .  
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We now introduce the following set of probabilities: 

Pn,id(t)  = P r { N ( t ) = n ,  R ~ ( t ) = i ,  R s ( t  ) =j} ,  

Po,i( t)  = P r { N ( t ) = O ,  R a ( t  ) =i} .  

We will also use the following notation: 

- 1/A = the mean  interarrival time, 1//x = the mean  service time and p = A//x 
= = E ~ = l ( 1 / h k ) p k  _ - -pr)  and 1//x the traffic intensity. Note  that  1 / k  L gik;l~(1 
= ~ M = l ( 1 / t Z k ) q k l - I k = l ( 1  -- qr)" 

- Pn(t) = a column vector, whose elements  are the probabilities Pn,i , / t) .  
- ak(t) ,  b~(t) = the probability density function (pdf) of the remaining interar- 

rival (service) time if the cus tomer  in the ATC (STC) is in stage k = 1 , . . . ,  L 
(r  = 1 , . . . ,  M).  Note  that  because of the memoryless  proper ty  of the exponen- 
tial distribution al( t) ,  b l ( t )  is the pdf  of the interarrival (service) time. 

- a[(t) ,  b / ( t ) =  the probability to move from stage i<~j of the ATC (STC) to 
stage j dur ing the interval t wi thout  having any new arrival (service comple- 
tion). 

- at ( t )  = ( a ~ ( t ) , . . . , a t ( t ) ) ' ,  ak ( t )  = ( O , . . . , a ~ ( t ) , . . . ,  a~( t ) ) ' .  
b l ( t )  ( b l ( t )  , bM(t) )  ', bk( t )  = (0, .  k _ = . . . ,  . . , b k ( t ) , . . . , b M ( t ) )  '. 

- % ( s ) ,  Olk(S), i lk(S),  ak(S), i l k ( S ) =  the Laplace transforms of P,,(t), ak( t )  , 
bk( t )  , ak( t )  , bk( t )  respectively. 

- e i =  (0 , . . . ,  1 , . . . , 0 ) '  with an 1 at the j t h  coordinate.  

By introducing the following upper  semidiagonal matrices A0, 
dyadic matrices A1, BI: 

0 

--PlA1 0 

A1 -- 

--(1 - - p l ) h l  . . .  0 

- A  L 0 

�9 . .  h L 

B 0 and the 

and similarly B 0, B 1 for the service time distribution we have 

= e;(Is +A0)  -1, 
L L 1 7 r - l [  1 

a k ( s )  = - e ~ ( I s  + A o ) - ' A  = r , e l  E PrArO~k(S) = E P r h r  ~*i=k~" - - P i ) A i  
r=k r=k l~r=k( S -]-'~i) 

and similarly for/3;~(s), il~(s). 
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We use the usual tensor notation (see also Neuts [10], p.53) 
! ! ! 

( x l , ' " , x , , )  |  = ( X l Y l , ' ' ' , x n Y l  . . . .  'x , ,Ym)" 

Finally, _u +, _v ~ __v-, _0, u~ _u~-, _v~- are transition rate matrices. We can express the 
transitiofi rate matrices m terms of the matrices Ao, A1, Bo, B 1 using tensor 
notation. For example 

u ~ = - I |  o - B  o |  

3. The queue length distribution in the transient domain 

The system M G E L / M G E M / 1  is an instance of the homogeneous row-con- 
tinuous Markov chain with a single boundary (Keilson and Zachmann [8]). We 
analyze the homogeneous part of the Markovian dynamics using the separation 
of variables technique combined with tensor algebra. Then we analyze the 
compensation part (i.e. the boundary condition plus the initial condition) using 
linear algebra. In this way we succeed in finding a closed form expression of the 
Laplace transform of the queue length distribution. We assume that the system 
is initially empty. Although our approach can be in principle applied even in the 
case of arbitrary initial conditions, the algebra required makes the explicit 
derivation very hard. 

THE HOMOGENEOUS PART 
Using the notation of section 2, we first write the Chapman-Kolmogorov 

forward equation for n > 1: 

d 
Tie,;(t) = + + e ' ( t ) e  ~ + e '+ l ( t ) e - .  

By taking the Laplace transform and using the assumption that P~(0)= 0 (for 
n >/1) we obtain: 

S ~ ( S ) = ~ _ I ( S ) b ' + - } - ~ ( S ) ~  0 -1- ~ +  l(S)b'- .  (1) 

THE COMPENSATION PART 
Similarly, the Chapman-Kolmogorov forward equation for n = 0 and n = 1 is: 

d 
= e;(t)e ~ + e;(t)e  

d 
- ~ P ; ( t )  = P;(t)u_~ + P;(t)v_ ~ + P;(t)v_-, 

and therefore the Laplace transform of the equations for n = 0, 1 is: 

s~-;(s) = e ; (0)  + ~-;(S)eo ~ + ~-;(s)_~;-, (2) 
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s l(s) = ' + ' ( s ) z  ~  o(S)eo + 7 ,  _ (3) 
Our general strategy for analyzing these equations is the following. We first 

find the general solution of (1) for n > 1. The solution of the Laplace transform 
%(s) is then written as a linear combination of M geometric terms. The only 
unknowns are the M constants that depend on s (the coefficients D r ,  r = 

1 , . . . ,  M below). From (2) we find 7r0(s) as a function of the M coefficients D r. 

Finally we use (3) to find a linear system of M equations with M unknowns. We 
exploit the particular structure of the linear system to find a closed form 
solution for the unknowns Dr, r = 1,..., M. As a result, we find explicit closed 
form expressions for the Laplace transform of the queue length distribution. 

The advantage of our expressions is that they can be numerically inverted in 
real time. In principle this approach works for arbitrary initial conditions. We 
were able to find closed form expressions only in the case in which the system is 
initially empty, i.e. Pn(0) = 0 for n > 1. We can now prove our first result. 

T H E O R E M  1 
Under  the assumption that the system is initially empty, i.e. the only nonzero 

initial probabilities are P0,k(0) for all k, and p < 1 the transform of the queue 
length distribution has the following form: 

M 
~rn(S)= Y'~DAgl(Xr(S))| n-1 {n>/1}, 

r = l  
L M 1 

-n-o(S) = y '  Po,.~(O)e%(s)+ r~_.lVrx-~fil(Xr(S))(Oel(S-Xr(S))--ITI(S)), 
k = l  

where 

E~=~po,k(O)ak(s) ( _  1)Vfi?(O) M Xk(S ) 
D~= 1 -- f f l (S)  j~IM(Xr(S)) Xr(S)  k=lH Xr(S ) __ Xk(S  ) , 

k4=r 

and x = xr(s) (for r = 1 , . . . ,  M) are the M roots of the equation: 

{ ' a l ( S - - X ) J ~ I ( X )  = 1 , 

~.@(x) < 0 (i.e. 11 a , ( s - x )  11 < 1) for ~@(s) > O. 

Proof 
We first find the general solution of (1). Equations (1) are partial difference 

equations with constant coefficients. Following the separation of variables 
technique we assume that a general solution %(s)  of the difference eq. (1) is: 

, 

which can be written in tensor notation as follows: 

| O(s ) (w(s ) )  
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with 

4 , ( s ) =  . , o ( s ) =  �9 

l<i,/  kst 
We substitute the form of rr~(s) into (1) and using tensor notation we obtain: 

s ,~ ' ( s )  | o ' ( s ) ( w ( , ) )  n-1 

= - -~ ) ' ( s )A  1 |  @I~'(S)(W(S)) n-1 

! I1 

-O'(s) | -~'(~) | ( ~ ) B , ( w ( ~ ) ) ,  

which by collecting terms can be written as ( 1) 
@ i ~ ' ( s ) ( B  0-I-W(S)B1) =0.  

Our goal is to find one solution that satisfies eqs. (1), (2) and (3). Since the 
solution of (1), (2) and (3) is unique, our solution will indeed be this unique 
solution. For this reason, using the standard separation of variables arguments 
(see Bertsimas [2]) in tensor notation we require that q~'(s) is a row eigenvector 
of the matrix (A 0 + (1 /w(s) )A  1) with an eigenvalue - y ( s )  and ~ ' ( s )  is a row 
eigenvector of the matrix (B 0 + w(s)B 1) with an eigenvalue -x ( s ) .  As a result, 

(s - x ( s )  - y ( s ) ) [~ ' ( s )  | ~,'(s)] = 0, 

and therefore 

s = x ( s ) + y ( s ) .  (4) 

In the following claim we establish the relation among w(s), y(s) and x(s), by 
computing the characteristic polynomials of the matrices (A 0 + (1 /w(s) )A  1) and 
(B  0 + w(s)B1). 

CLAIM 1 

al(Y(S)) = w(s) and w(s)fia(x(s)) = 1. 

Proof 
Since - x ( s )  is an eigenvalue of (B 0 + w ( s ) B 1 )  , it satisfies the following 

characteristic equation: 

det[ Ix(s) + B o + w(s)B1] = O, 

that is 

det[ Ix(s) + Bo] det[ I + w(s) ( Ix(s )  + B0)-IBa] = 0 .  
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Since the matrix B 0 has full rank, det(Ix(s)+B o) = Denominator[t31(x(s))] = 
I-IrM=I(I.Zr+X(S)) 4:0. Also for any rank 1 matrix B, d e t ( I + B ) =  1 + t r ace (B) .  
Thus, since B 1 has rank 1 

1 +w(s)trace((Ix(s)+Bo)-IB1)=0. 

But fll(x(s))= -trace((Ix(s)+ B0)-IB1) and therefore 

w(s)~l (X(S))=l .  

Using exactly the same methodology we establish that 

o q ( y ( s ) )  = [] 

We now compute in the following claim the eigenvectors O(s) and q~(s) in 
closed form. 

CLAIM 2 
The vector a l (y ( s ) )  is a row eigenvector of the matrix (A 0 + (1/w(s))A 1) and 

the vector fll(x(s)) is a row eigenvector of the matrix (B 0 + w(s)B1). Therefore  
we can choose ~(s )  = ~el(Y(S)) and 0 ( s )  =/3a(X(S)). 

Proof 
We prove the claim for fll(x(s)). The case for og(y(s)) is similar. Since 

fl~(x(s)) = e'l(IX(s) + B0) -1 we have that 

f l i ( x ( s ) ) (  B 0 + w(s)B1) =e'l(IX(S) + So) - l (B  0 + w(s)B1) 

=ei( Ix(s ) + Bo) - l ( - Ix ( s )  + (Ix(s) + Bo) 

+W(s)B1) 

= - x ( s ) f 3 ; ( x ( s ) )  + e i -  w(s) l(x(s))ei, 

since  i(s)B1 = - & ( s ) e ; .  But from claim 1, w(s)Nx(s)) = 1 and thus 

= [] 

As a result of (4) and claim 1, and since we are looking for roots w(s)= 
Oll(Y(S)) =al(S--X(S)) inside the unit circle, so that the solution is stationary, 
the general  solution of eq. (1) is 

% ( s )  = fll(X(S)) @ la, l (S -x ( s ) ) (Ol . l (S -X(S) ) )  n-l, (5) 

where, because of (4) and claim 1, x = x(s) satisfy the equations 

{ O~I(S --X)/~I(X ) = 1, 
. ~ ( x )  < 0(i.e. 11 a~(s -x)[[ < 1) for ..@(s) > 0. (6) 

In the following claim we investigate the number  of roots of (6). 



D.J. Bertsimas, D. Nakaza to / Analysis of the GI / G / 1 queue 161 

CLAIM 3 

For p < 1 eq. (6) has M roots xr(s) , r = 1 , . . . ,M .  

Proof 
This can be easily established from an application of Rouche's  theorem in the 

domain ~ ( x ) <  0. For a very similar application of Rouche's  theorem see 
Bertsimas [2]. The same result can be established from matrix geometric 
considerations by noticing that the roots al(S -x , ( s ) ) ,  r = 1, . . . ,  M are the M 
eigenvalues of  the matrix R(s) in Ramaswami [12]. [] 

Assuming that the M roots of (6) are distinct we can now write an explicit 
expression for %(s) ,  n >/1 by taking linear combinations of the general  solution 
form. Indeed,  there  are coefficients D r ,  r = 1 , . . . ,  M such that 

M 

"rrn(S) = Y'~Drfll(Xr(S ) @Oll(S--Xr(S))(Oll(S--Xr(S)))  n-1 { n ) l } .  (7) 
r = l  

Remark: The distinctness assumption 
This distinctness assumption, is very convenient in order  to find an explicit 

expression for %(s) ,  n >~ 1, but it is not critical however. The algebraic theory of 
rational functions guarantees that if there  are multiple roots, we can take the 
limit of  (7) as xr(s) ~Xk(S)  for some r, k. In other  words, we first solve the 
problem assuming that the roots are distinct and at the final stage we show the 
results are independent  of  this assumption. In fact, our final expressions for the 
queue length and the busy period distributions are simple symmetric functions 
of these roots. So, finding the limit in the case where there are multiple roots is 
an easy task. 

The remaining unknowns are the coefficients Dr(r = 1, . . . ,  M)  and ~'0(s). In 
the following claim we express ~-0(s) as a linear combination of the Dis. 

C L A I M  4 

L M 1 
"Wo(S) ~ E eO,k(O)Olk(S) nt- E Drx_~S]~I(Xr(S))(OII(S--Xr(S))--till(S))" 

k = l  r = l  r \  ] 

(s) 

Proof 
We substitute (7) into the eq. (2) and we obtain 

M 

s'rr;(s) = P d ( O ) - ~ ( s ) A  O -  E Dr( f l l (Xr(S))Ble l )~  . 
r = l  
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Thus 

z r ~ ) ( s ) = e ; ( O ) ( l s  -]- A o) -1  

M 

+ E Or~l(Xr(S))ei(I(s-Xr(S)) +Ao)-l(  IS + A 0 )  -1  
r = l  

L 

= E Po,~(o)~( , )  
k = l  

M 1 
+ r~=IDrX~[~I(Xr(S))(Oll(S--Xr(S))- ~ 1 ( S ) )  �9 [] 

The next step in our approach is to find the coefficients D r (r  = 1 , . . . ,  M ) .  In 
the following claim we establish the equations from which the coefficients D r 
are computed. 

C L A I M  5 

For all k = 1 , . . . , M :  

M 1 ~f (x~( , ) )  
~D~ 

r = l  Xr(S) ~kl(O) 
~L~Po,~(o)~(~) 

1 - a l ( s  ) 

Proof 
Using (3) and (7) we easily obtain that 

M 

37r~(s)--Tr;(S)_p~ - =  E Dr[3;(Xr(S))" 
r = l  

From (3) 

M 

E Drt~l(Xr(s)) = - - (=; (S)Ale l )e l .  
r = l  

Using (8) and since a ~ ( s ) ( - A l e  ~) = al(S) we obtain that 

--('17";(S)AIe1) :g;(o)(IS +Ao) - l ( -A le l )  
M 1 

+ r~=l Drx~'~/J~i(Xr(S))(OLI(S --Xr(S)) --  O/l(S))  

M 1 -Oll(S)~l(xr(S)) 
= a * ( s )  + Y'~ D r 

r=~ xAs) 

(9) 

(10) 
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where  we defined a * ( s ) = P ~ ( O ) ( I s  + A o ) - t ( - A l e l  ). We substitute this equa- 
tion into (10) and obtain 

r_~l { 1--al(S)~l(Xr(S))e'l} o~* (s)e'l = D r ~(Xr(3))--  Xr(S ) 

M { IXr(S)+Bo B1 } 
= E DA~;(x , ( s ) )  x e l ( s )  . 

r= l *r ( S ) XTV)  

Since 13~(s)= e'l(IS + B 0 )  -1 and ]31(s)e' 1 = - ~ ( s ) B 1 ,  then 

M 1 
a* (s)e'l = r~____iDrx~)~i(x,.(s)){lxr(S)-(lxr(s)+Bo)-a,(s)B1} 

M 1 

-- r~= lDrxr(a----~13; (Xr(S) )( B 0 -t- O~l(S)B1). 

But e[(Is + B o + WB 1)- t = f l~(s ) / (1  - Will(S)) and hence e;( B o + a l (S )B  1)- 1 = 
t l [(0)/(1 - a l ( s ) ) .  As a result, 

M 1 a * ( s )  

r ~ l D r x ~  ~[(Xr(S))-  1 __ffl(S) ~;(0) 

~-,L=lPo,k(O)ak(S) _,,^, 
= -- i ~  /'~ ltlJ) " (11) 

Therefore ,  for all k = 1 , . . . ,  M the coefficients D r satisfy the linear system (9). 
[] 

We now solve the linear system (9) in closed form. 

CLAIM 6 
The linear system (9) has the following solution: For all r = 1 , . . . ,  M: 

L z~:~Po,~(o),~(~) ( -  1)'~1"(o) M x~(~) 
Dr= 1-oq(s )  jG1M(Xr(S)) Xr(S)k=lN Xr(S )_xk(3  ) " 

kCr 

Proof  
Let 

1 --al(S ) ~M(Xr(S)) Dr . 
C r -= ~L,Po,k(o)~(s) t~(O)xr(s) 

Since for all k = 1 , . . . , M  

t~f(~) ~7+,(s) t~Y(s) 
~f(o) ~y+,(o) t~y(o)' 
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we obtain that for all k = 1 , . . . ,  M, 

" ~+1(o) 
E c , ~  -~ ,  
r=~ LI(Xr(S)) 

i.e. 

M M ( ~r(~) 
E C r  I-[ 1 +  = 1 .  

r = l  n = k + l  /-t~n 

We expand the above equation as a polynomial of x~(s) and obtain 
M M - k  

Y'~ E C,~ 1, 
r = l  n = 0  

where O'k, . are the coefficients in the expansion. We express this equation in 
matrix form and we obtain 

o-,,o (x~(s)) M-~ 

. . .  1 1 . . .  
It 1!. 
S A 

Since by the definition of the O-k,,, 

Ii .... ~ -1: 

(xM(,)) " -  

(x )  
1-i ~=-11 1 + - -  

~'s + 1 

1 
C1 

U U 
C = 1 

- ~ ( s )  
= I ~  

k = l  X k ( S )  - - X r ( S )  
k4=r 

M X k ( S  ) 
xr(~) I1 ~=1 Xr(~)--X~(~) 

k C r  

[] 

Therefore,  

L Y~.k=lPo,k(O)OLk(S ) (- 1)Mt~7(O) 
D r =  

1 -a~(s )  ~ ( x , . ( s ) )  

V(XI(S),...,Xr_I(S), O, Xr+I(S),...,XM(S)) 
c,= v(xl(,),..., xM(s)) 

1 1 

By letting x = 0, we obtain that S-11 = e M and thus, 

C = A - le  M . 

We now observe that the matrix A is a Vandermode  matrix. Using Cramer 's  
rule to solve the above linear system and exploiting the property that the 
determinant  of  a Vandermode  matrix genera ted  from u l , . . . ,  u M (denoted by 
V ( u p . . . ,  UM)) is given by 1-I i<j ( l t  i --  blj), we obtain that 
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Having found explicit solutions for the remaining unknowns D r w e  have 
explicit expressions for the %(s),  n > 0. The proof of theorem 1 is now 
complete. [] 

As an additional check of the algebra we compute the generating function 
c ~  

1 + E �9 1 .  

n = l  

Summing up (7) and (8) we obtain that 

1 EI#=~Po,k(O)ak(S) 
- + 

S 1 - -  f f l ( S )  

M (_l)M/37(0)  1--Z r 1 
•  

r = I  ~IM(Xr(S)) S--Xr(S) 1--Za'(S--Xr(S)) 

M xk( ) 

x k=,FI xr(s)-uk(,) 
k4-r 

For z = 1 we obtain that gZ(s, 1) = l / s ,  which is the condition that the probabil- 
ities sum to one in the transform domain. Another interesting point is the fact 
that the generating function gr(s, z) is symmetric with respect to the roots 
Xr(S). This observation is nontrivial and it is established by using the Lagrange 
interpolation formula and the Chinese remainder theorem. Theorem 1 was 
proved under the assumption that the roots Xr(S) are distinct and therefore all 
the formulae are valid only in this case. If, however, there are multiple roots (say 
xi(s) =xj(s)), the resulting formulae are simply the limit of the formulae given 
here as xi(s) +xj(s) .  

4. Busy period analysis 

Ramaswami [12] has characterized the busy period of an G / P h / 1  queue 
using the matrix geometric approach. In this section we simplify his result 
considerably and succeed in deriving a very simple formula for the Laplace 
transform of the busy period distribution which is very suitable for numerical 
inversion in the time domain as we show in the next section. 

Let Bp be the length of the busy period. We also define a new random 
variable Aid , which we call the queue build up time. This random variable plays 
a critical role in the analysis. Aid is the time between two arrival epochs with the 
following properties. Immediately after the initial arrival epoch there are n 
customers in the system and the STC is in state i, while immediately after the 
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final arrival epoch (there may be other arrivals in between) there are n + 1 
customers in the system and the STC is in state j. In addition, throughout the 
t ime  Ai, j the number  of customers never decreased below n. Notice that Ai, j is 
independent  of n. 

Let R(t) be a matrix whose i, j element is the pdf Rid(t) = dPr[Aid <~ t] /d t  
of the queue build up time. Let Fi,i(s)= E[e -'a',i] be the transform of Rid(t) 
and F(s) be the transform of R(t). Finally let ~:'(s) be a row eigenvector of 
F(s) with an eigenvalue u(s). We can now state and prove our basic result. 

THEOREM 2 
The Laplace transform ~r(s) of the busy period Bp is given by 

1-[M I(S +/Xk) 
,] = ) , 

where x,.(s) are the M roots of the polynomial eq. (6). 

(12) 

Remark 
(12) is a simple symmetric function of xr(s) and therefore the distinctness 

assumption is no longer necessary. 

Proof 
By focusing on the last customer arrived in the busy period we write the busy 

period dynamics. 

d { ft~ } oo M  ;Pr[Bp t] = bl(t) al(t) dt + ~_, ~_, R]'~)k(t) 
n=l  k= l  

* b k ( t ) *  ~lh(n-l)(t) * E b~(t)q,.~r a l ( t  ) d t  , (13) 
r= l  

where the symbol " *" indicates convolution, the first term corresponds to the 
case in which the last customer in the busy period was the only one in the busy 
period and in the second term (the double summation) we condition on the 
number of customers n and the state k of the STC this customer has found 
when he entered. In this case, the busy period is the sum of two independent  
random variables: The time to build n customers in the queue (a convolution of 
n build up times A~, k) and the time to empty the system, since he is the last 
arriving customer in the busy period. 

Our strategy is first to find R(t) and then using (13) to find the transform of 
the busy period. We are thus naturally led to the dynamics of the queue build up 
times. Similarly to the first passage time analysis as in Keilson and Zachmann 
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[8], we write down dynamics of the queue build up time in matrix form by 
considering the last arrival during Aid 

bl(t ) ... blM(t) 

R(t)  = a,( t )  

0 ...  b~ ( , )  

+ ~ R(~( t )*  " * b { ~ - l ~ ( t ) * ( b l ( t ) . . . b ~ ( t ) )  a,(t)  

,=a bM(t ) 
c o  

=B(t)al( t  ) + y" R(~)(t).[F,,(t)al(t)], 
n=l 

where B(t), F,,(t) are the upper  diagonal matrix appearing as the first term in 
the sum and F,,(t) is the matrix composed of the three convolutions. By taking 
the Laplace transform of the above matrix equation and multiply both sides 
from the left with the eigenvector of F(s)g'(s) ,we obtain: 

{[ ,] ,} u(s)~ ' (s)  =~:'(s).S B( t )  + Y', u"(s)F~(t a,(t . (14) 
n = l  

But, 

/~1(S)~1(s) 
U 

( I s  ~- 8 0 q-b/B1) -1 = ( I s  -[-B0) -1 -}- 
1 - U]~I(S ) 

since for every pair of matrices C of full rank and D of rank 1, (C + D) - I  = C-1 
- (C-1DC-1)/(1 + tr(C-lD)). By expressing this in real time we obtain 

bll(t) ... blM(t) ] 
e-(Bo+uBP t = 

0 . . .  b ~ ( t )  ] 

oo 

+ E U  n 
n = I 

As a result, (14) becomes 

b~(t) 

bM(t) 

* b~"-l)(t)*(b~(t) . . .bM(t)).  

u(s)~'(s) =~'(s)..S{e-~",,+"~'>'a,(t)} = ~ ' ( S > l ( I S  + Bo + , ( s ) B , ) .  (lS) 

Therefore, since oq(s) is a rational function, s~(s) must be a row eigenvector of 
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(B o + u(s)B1). If -z(s) is the corresponding eigenvalue, following the same 
technique as in claim 1 we have that 

u(s)~l(z(s)) = 1. (16) 

Since al(S) is a rational function of s, we get from (15) that 

/,t(3) =GI(S -z(s)) .  (17) 

Comparing (16) and (17) we observe that z(a) satisfies exactly the same 
equations as x(s) (eqs. (6)) and therefore z(s)=x(s), u(s)=w(s) and ~:(s)= 
~I(X(S)). 

Having characterized the eigenvalues and eigenvectors of F(s) we can spec- 
trum decompose it under  the distinctness assumption: 

M 
( r ( S ) )  n = Z (Oll(S--Xr(S)))n6r(S)j~tl(Xr(S)), (18) 

r=l 
where 

] ~; (Xl(3))) 
Q ( S )  = " = [~ l (S ) . . . ~ t~M(S) ]  -1  

L/~;(x.(s))  
After the characterization of the F(s) we take the Laplace transform of (13). 

Using (18) and after similar manipulations with the analysis of the queue build 
up time, we obtain 

M 1 - < ( s - x r ( s ) )  ~ ,  , ,, 
~ ( ~ ) =  g~' ,~, (~)  ; : -x , -~  p~t~,~s, r=l 

~ , ( x , ( s ) )  - 1 

s -Xl(S) 
, (__~ ( ) ) - 1  =e I s 

j~ I (XM(S) )  - 1 

, - xM(s )  

Since for any non singular matrix A we know that x'A-ly = 1 -  d e t ( A -  
yx')/det(A), we find that 

[ e,<(x,(s))-_~ 
1 S-Xl(S) 

det(;(,)) 
- 1 

L ' , -x~(s)  
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But for all r = 1 , . . . , M  

, ~ l ( X r ( S ) )  - 1 
r S --Xr(S) 

Hence, 

~(s)=l-  

1 
S--Xr(S ) { e ~ l ( x r ( s ) )  --e'l} 

1 e ; ( ( i X r ( S ) + B o ) _ l ( _ B 1 ) _ i  } 
s --Xr(S) 

1 
s --;r(S) e;(IXr(S ) + B o ) - I { - B 1 -  (IXr(S) + B0) } 

1 
S -- Xr(S ) ~l(Xr(S)){I(s -- Xr(S)) - - ( Is  + B 1 + Bo) } 

1 
_Xr( S ) ~l(  X r( S) )( Is -}- B 1 '{- Bo). 

1 
d e t ( ~ ( s ) - { ~ ( s ) - d i a g o n a l ( s _ x l ( s )  .... .  s _ l m ( s ) ) 1 3 ( s ) ( I s + B l + B o ) ) )  

det(_~(s))  

= 1 - de t (d i agona l (  1- 1 ) ) d e t ( I s + B l + B o )  
~ S -- XI(S ) ..... S -- XM(S ) 

= 1 - -  
Denominator131(s) - Numerator/31(s) 

rI~ 10- xAs)) 
(FIM__-~I(1 - q k ) / x k ) ( 1 -  131(S)) 

~M(s)II~M= I ( S -  Xr(S)) = 1 -  

=I--(1--[~I(S))[]M_I(S__ Xr(S))" [] 

Although the analysis used some rather heavy machinery from linear algebra, 
it used direct probabilistic arguments by considering the dynamics of the system. 
The reward of this analysis is a very simple expression for the transform of the 
busy period distribution, which as we show in section 6 offers very important 
computational advantages. In addition, it is not hard to compute in closed form 
moments of the busy period distribution by repeated differentiation of the 
Laplace transform. 

5. The waiting time distribution under FCFS 

In this section we derive an expression for the conditional waiting time pdf 
given the arriving time. It is also possible to find the waiting time of the nth 
arriving time using the methods of this paper. 
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Our  strategy for the analysis is the following; we first find the distribution of 
the number  of customers in the system at an arrival epoch; condit ioned on the 
n u m b e r  of customers  found upon  arrival, we then  find the waiting time pdf  and 
finally we find the (uncondi t ioned)  waiting t ime cdf. 

In order  to obtain a closed form expression in the t ransform domain,  we 
make  the assumption that  the system is initially empty  and futhermore,  the 
initial probability distribution has a very special form. 

ASSUMPTION 1 

We assume that  the initial probability vector P0(0) = Aal(0). 

In principle, this assumption is not necessary if we take a pure  numerical  
approach  for the solution. Without  this assumption,  however,  it is not possible 
to obtain a closed form expression both in real t ime and in the transform region�9 
In the next theorem we prove a critical consequence of assumption 1; the arrival 
process has already reached steady state from the beginning, i.e., 

Po,i(t) = Pr[ R~(t) = i] = Pr[ Ra(O ) = i] = Po,i(O). 

PROPOSITION 1 
If the initial condit ion satisfies assumption 1, the arrival t ime of the first 

cus tomer  is the forward recurrence  t ime of the interarrival time, i.e. the residual 
life t ime of the renewal interval. Fur thermore ,  P0(0) is the stationary solution of 
the Kolmogorov equation: 

d 
~ - P ' ( t )  = - P ' ( t ) ( A  o +A1) 

e ' ( t ) ' l = l ,  

that describes the arrival process. 

Proof 
The transform of the interarrival t ime To* of the first cus tomer  is given by: 

 i(s) 
�9 

Since a~(O) = e'lAo I and 

�9 = ( I s  + A o ) - l ( - A l e l ) ,  

 L(s) 
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we find after simple algebraic manipulations the transform of the forward 
recurrence time under  assumption 1 as follows: 

o~ * ( s ) = Aoz ; (O) " ( Is + A o ) - l (  - A l e l )  

= Ae ' l (Ao) - l ( I s  + A o ) - l ( - A l e l )  

1 
= A e ' l - - ( ( A 0 )  -1  ( I s + A o ) - l ) ( - A l e l )  

s 

A 
= - ( 1  - 

s 

To obtain the stationary distribution, we observe that (A 0 +A1)1 = 0 and 
because of the structure of A1, we know that A l l  =A~e 1. Thus we find 

I = - A o l A l e l ,  (19) 

or equivalently 

le '  1 = - A o l A 1 .  

We are now ready to prove that the stationary probability vector is proportional 
e lAo  , to al(O); for this it suffices to show a~(O)(A o + A  l) = 0'. Since a~(O)= ' -1 

we have 

a ; ( O ) ( A o + A 1 )  

= e ' l A o l ( A o  +A1) 
! 

=el  +e' lAolA1 

= e ' l - ( e ~ . l ) e '  1 
! ! 

= e  I - - e  1 

0t.  
We complete the proof by showing 1/A =a ' l (0 ) -1 .  Utilizing (19) and the 
definition al(s) = - e [ (  Is + A o ) - l A l e l  we obtain 

o ~ ( 0 ) "  1 = - a ~ ( 0 ) A o l A l e l  

= - e ~ A o ~ o l A l e l  

= _ l ime~Ao l ( I s  + A o ) - l A l e l  
s ---~ O 

1 
= l i r a - e ; ( ( I s  +Ao)-I-Aol)AIr 

s~O S 

OLI(O ) -- OLI(S ) 
= lim 

s--,0 S 

1 

A 
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Therefore,  we have proved that  the ergodic solution to the above Kolmogorov 
equat ion is Aal(0) =P0(0).  [] 

A corollary of the theo rem is that  the expression for D r in theo rem 1 further  
simplifies to 

D , = -  -~gTx_-7~s] ] xAs ) 11 
k r  

since 

L A 
E Po,k(0)a~(s) = c~*(s )=  7 ( 1 -  a l ( s ) ) .  

k=l  

(20) 

We will next find the distribution of the number  of customers  in the system 
seen by an arriving customer.  We define the event AAO = Arrival about  to 
occur in (r ,  r + d r )  and the pre-arrival probabilities: Ps 
Rs(r)  = i I AAO]. In the following proposi t ion we find the pre-arrival probabili- 
ties. 

PROPOSITION 2 
U nde r  assumption 1 the vector of the pre-arrival probabilities is 

1 
P,f-(r) = -A-P,f(r){(-AIel) | 1}, 

and its Laplace t ransform is 

1 M 
7 r s  ~ _ . ~ D r ~ 8 1 ( X r ( S ) ) ( o q ( s - x , . ( S ) ) ) "  {n>~ 1}, 

r=l  

1 M 

= 7 E 
I "=I  

t'~oof 
er[  X ( ~ )  = ~ n R s ( ~ )  = i n A A O ]  

P,7,i( r ) = Pr[ N ( r )  = n, R,~( r ) = i ] A A O  ] Pr[AAO] 

Vr[ U f= 1(N(r)  = n n R,.(r) = i O R~( r )  = l)  O AAO] 

Vr[ U ~= ,R,,(r) = l N AAO] 

Y:~_ler[aAOIN(~)=nnR,(r = t]Pr[N(~) = n n R,(~) = i n R.(~) =l]  
z,L,  P;[ AAO t R~(r  = l]P~[ R , , ( , )  = l] 
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But 

and 

Pr[  A.AO[ N(~-) = n  n R,(-r)  = i C~ R~(~-) = l] 

= P r [ A A O  I Ro( r  =1]  = A,p,  de  

Pr[ R~(~-) = l] = Po,t(O) = Aa~(O), 

from proposition 1. It is at this point that assumption 1 becomes critical. 
Without this assumption Pr[Ra(~') = l] would be a function of ~-, while under  
assumption 1 it is independent  of 7, and therefore it would not be possible to 
find a closed form formula for the transform of the pre-arrival distributionl 
Therefore,  we obtain 

r-,L I,~lpIL,,,,(~ ) 
P L ( ' )  = 2 L ~ a a , p , ~ { ( o )  ' 

since ~f=lAlPlOLll(O)=Ol1(0)= 1. Therefore,  using vector- tensor  notation we 
have: 

1 
Ps = 7 P t : ( ~ ) { ( - A l e l )  @ I}. 

In the transform region, using 
M 

7]'n(S) "-~ E Dr~l(Xr(S)) @Ogl(S --Yr(S))(Oll(S --Xr(S))) n-1 {/1 ~.~ 1}, 
r = l  

we obtain (the derivation for 9ro(s) is similar) 

1 M 
"n'5(s) = 7 E nrlJl(Xr(S))(al(  s --Xr(S))) n {12 ~ 1}, 

r = l  
1 M 

7"to(S) = -~ E Drt~{(Xr(S)). [] 
r = l  

We are now ready to prove the central theorem of this section. 

THEOREM 3 
Unde r  assumption 1 the Laplace transform of the waiting time distribution 

under  FCFS is 

.~ 1 ~ ( -  1)M/3~(0) 
"/0 e -S 'p r [W(~)  ~< t] d~- = - + 

s r=l  s ~ ? ( x ~ ( s ) )  

(O~r xk(Oex ' ' s ) '= ( , { ,  • XrS-X,/s- 



174 D.J. Bertsimas, D. Nakazato /Analysis of the GI / G /1 queue 

Proof 
Given there are exactly n customers in the system including the customer just 

arrived and the STC is in stage i, then waiting time c.d.f, is: 

t 

Ej=lbl(t)qflxj  dt f ob i ( t ) , b~n-2 ) ( t ) ,  M j 

JjEM=lbii ( t )q]l~ j at 

u(t) 

when n > 3, 

when n = 2, 

when n = 1, 

where U(t) is unit step function. By conditioning on the state the arriving 
customer found the system, and using the expressions for the pre-arrival 
probabilities from proposition 2 we obtain: 

o o  

f0 e -S 'Pr [W(r )  ~< t] dr  

elg(t)  -1- fot{Oll(S--Xr(S)) 

bl ( t )  . . .  bM(t) - 

o bg(t) 

M 
1 E Drfll(Xr(S)) 
~ r = l  

hi(t) 

bM(t) 

. o  o 

* b~n-1)(t) ,(bl(t) . . .bm(t))} 
oo 

~- E (Oll(S--Xr(S))) n+l 
n = l  

X 
ql~l  

/~M 

dt (21) 

We have observed in the analysis of busy period from the previous section 
that 

e-(Bo+uBi) t : 
-b~(t) . . .  bM(t) 

0 . . .  bM(t) 

oo 
+ E U  n 

n=l 

bl(t) 

bM(t) 

* b~ n -1 ) ( t ) * (b l ( t ) . . . b~ ( t ) ) .  
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Substituting this into (21) we obtain 

fn e-S'pr[W('r) ~< t] dr 

1 M 

E t~'(~r()) ------ D s 3. r 1 
r = l  

Since fl'l(Xr(S)) is a row eigenvector of (B 0 +al(s-xr(s))B 1) with eigenvalue 
-x,.(s) and al(s -Xr(S))~(Xr(S))(-Ble 1) = 1, we obtain 

1 M ( f0" fo e -S~pr[W(r )< t ]  d'r=Tr~-lDr [3;(x"(s))elU(t)q- e xAs)t dt 

+ 

Substituting expression (20) for D r 

1 
fo e - " P r [ W ( r )  < t] aT = -s 

X 

1 M [ e xr(S)l -- 1 

I 
! A y'~ D~U(t) flt(Xr(S))el + 

r = l  

= _  y" A DrU(t) Xr(S I 
r = l  

eXr(S)t ) 

1 M [ 1 

= 7(r~lDrU( t)( xr(s) l~;(xr(s))B~ 

eXAS)t I 

Xr(S)]" 

and using (11) we finally obtain 

+ ~ (--1)MfiM(o) 

r = l  S[~IM(Xr(S)) 

~ 1  x ~ ( ~ ) e X r ( S ~ ' [] 
= Xr(S)--Xk(S ) " 

Xr(S) 
Ix,.(s) + Bo 

x , . ( s )  e~, 

A corollary from the previous theorem is that 
oo m 

49(s, w ) =  f0 f0 e-S'- '~ dt dr 

~'(0) - Xr(S) 
- r__nl 
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Note that this expression is a symmetric function of the Xr(S)'S. In addition the 
quantity lim s_~ oSqS(s, w) is the solution of the steady state Lindley equation for 
the G I / G / 1  queue, i.e. the transform of the steady state waiting time distribu- 
tion. 

6. Numerical results 

In the previous sections we have derived explicit expressions for the Laplace 
transforms of the queue length, the waiting time and the busy period distribu- 
tions. In this section we will remove the "Laplacian curtain", by numerically 
inverting the Laplace transforms. The numerical inversion of the Laplace 
transform is a well studied but not completely solved problem in numerical 
analysis. In fact, Platzman, Ammons, and Bartholdi [11] show that the problem 
of numerically inverting the Laplace transform of a probability distribution is 
#P-complete, that is, a hard computational problem. 

Our overall algorithm is written using the software package of Mathematica, 
developed by Wolfram [13] and works as follows. We first compute the roots of 
the polynomial eqs. (6) for selected s values. For this purpose we use the build 
in functions of Mathematica to find all the roots of (6). We then use the 
algorithms of [11] and [7] to compute the inverse Laplace transform of the 
distributions under study. We used two algorithms to invert numerically the 
Laplace transforms: 

(1) The algorithm of  Platzman et al. [11]. 
This algorithm works for distributions that are defined over finite regions. We 

used this algorithm combined with fast Fourier transform for the inversion of 
the busy period distribution. Although the busy period takes values in the region 
(0, ~), in order to apply the algorithm we used the region (0, E[Bp]+ 
3~Var[Be] ) as the region on which the busy period is different from 0. For 
details of this algorithm the reader is referred to [11]. 
(2) The algorithm by Hosono [7]. 

Hosono [7] proposed an algorithm for inverting Laplace transforms which is 
quite robust and accurate. We used this algorithm for numerically inverting the 
busy period, the waiting time and the queue length distributions. The algorithm 
is not well-known in the western literature since it is primarily published in 
Japanese. We found however that it is a very robust algorithm. It satisfies all the 
necessary conditions which an ideal fast algorithm should satisfy, namely: It is 
easy to program and control the error. Moreover, it has small memory require- 
ments, short computational times and can be used for a wide variety of 
problems. We briefly introduce the algorithm below. 
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Let ~b(s) be the input function. Let f ( t )  be the inverse Laplace transform of 
4,(s). We choose a precision p {significant digits} so that error of numerical 
inversion is less than 10 -p+I I f ( t ) ] .  Let 

Fn ~ ( - 1 ) n e p -  Im[ ( p + i ~ - ( n - 0 . 5 ) ) l ~ b  
t t ' 

and 

r = 0  

The algorithm works as follows: 
(a) Find k so that 

r = 0  

(b) Evaluate f ( t ) :  

k - 1  p - 1  

f(t)-- E F. + E CrF +r. 
n = l  r = 0  

Hosono claims that this algorithm works when f ( t )  is sufficiently smooth. In 
particular F, needs to satisfy the following conditions: 
(a) for sufficiently large n, 1 /2  < [F,+I/F . I ~< 1; 
(b) when n ~ % F,,, AF,,  AZFn,  . . .  converge monotonically to 0, where A r 

denotes the r th difference. 
It can be shown that the violation of these conditions results in the Gibbs 
phenomenon,  which only appears at points of discontinuity of f ( t ) .  

COMMENTS ON THE NUMERICAL RESULTS 
All the computat ion was done in a Macintosh II, and all the program is 

written in Mathematica. For computing the transient queue length and the 
waiting time distribution, we assume that the arrival time of the first customer is 
the forward recurrence time of the interarrival distribution. 

We tested our algorithm for various MGEL/MGEM/1  cases. From our 
preliminary experience we can say that the algorithms, in particular the algo- 
rithm by Hosono, are robust and run very fast. The largest example we ran was 
an MGE2o/MGE2o/1, which was solved by the algorithms without any difficulty. 
Unfortunately, we did not have any other numerical results to compare with 
except the ones for the M / M / 1  queue, whose solution is known explicitly in 
terms of modified Bessel functions (see Gross and Harris [6], p.143). Indeed, for 
various values of p ranging from 0.1-0.99 the algorithm gave identical results 
with the exact known values. In example 1 below we compare the results of this 
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Table 1 
The M/M/1  busy period CDF 

t Exact P.A.B. Hosono 

0. 0. 0. 0. 
0.94104 0.565744 0.529196 0.565744 
2.07421 0.734767 0.723878 0.734767 
3.20737 0.806977 0.811223 0.806977 
4.34054 0.848456 0.854939 0.848456 
5.47371 0.875836 0.883652 0.875836 
6.60688 0.875836 0.904243 0.875836 
7.74004 0.9102 0.919855 0.9102 
8.87321 0.921766 0.932158 0.921766 

10.0064 0.931074 0.942134 0.931074 
11.1395 0.938727 0.9504 0.938727 
12.2727 0.945129 0.957369 0.945129 
13.4059 0.950558 0.963326 0.950558 
14.539 0.955216 0.968478 0.955216 
15.6722 0.959252 0.972977 0.959252 
16.8054 0.962779 0.976937 0.962779 
17.9386 0.965883 0.980449 0.965883 
19.0717 0.968631 0.983583 0.968631 
20.2049 0.97108 0.986393 0.97108 
21.3381 0.973271 0.988927 0.973271 
22.4712 0.975241 0.991219 0.975241 
23.6044 0.977019 0.993303 0.977019 
24.7376 0.97863 0.995202 0.97863 
25.8707 0.980094 0.996939 0.980094 
29.2702 0.983766 1. 0.983766 

a lgo r i t hm to the  exact  resu l t s  for  a pa r t i cu l a r  M / M / 1  queue .  As  an  i l lus t ra t ion  

of  the  a lgor i thms  we p r e s e n t  in e x a m p l e  2 the  so lu t ion  of  an M G E 3 / M G E 2 / 1  
queue .  

W e  s tar t  ou r  exam p l e s  wi th  an  M / M / 1  q u e u e  wi th  t raff ic  in tens i ty  p = 0.75. 

T h e  in te ra r r iva l  r a t e  is h = 1 and  service  c o m p l e t i o n  ra t e  /x = 4 / 3 .  In  o r d e r  to 
c o m p a r e  the  accuracy  o f  the  two a lgor i thms  with  the  k n o w n  so lu t ion  we 

c o m p u t e d  in tab le  1 the  C D F  of  the  busy  pe r iod .  T h e  m e a n  is E[B e] = 3 and  
the  coef f ic ien t  o f  va r i a t i on  is C~ = 7. T h e  a lgo r i t hm by  H o s o n o  gives ident ica l  

resul ts  wi th  the  exac t  solut ion.  
In  fig. 2 we  p lo t  the  first and  second  m o m e n t s  of  the  wai t ing  t ime  as a 

func t ion  of  t. In  fig. 3 we  p lo t  the  wai t ing  t ime  d i s t r ibu t ion  as a func t ion  of  t. In  
figs. 4, 5 we  p lo t  t he  first  a n d  second  m o m e n t s  and  the  d i s t r ibu t ion  o f  the  q u e u e  
leng th  as a func t ion  o f  t. I n  all cases  the  a lgo r i t hm by H o s o n o  gave  ident ica l  
resu l t s  c o m p a r e d  to the  exact  va lues .  

M e r e l y  as an i l lus t ra t ion  of  the  a lgor i thms  we chose  an M G E 3 / M G E 2 / 1  
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Fig. 2. The first and second moments of the waiting time of an M / M / 1  queue as a function of 
time. 

queue with the following distributions: The interarrival distribution has Laplace 
transform: 

2 2 4 2 4 6 
a l ( s  ) = 0 . 5 - -  + 0.5 x 0.3 - -  + 0.5 x 0.3 
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Fig. 3. The waiting time distribution of an M / M / 1  queue as a function of time. 
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Fig. 4. The first and second moments of the queue length of an M/M/1 queue as a function of 
time. 

w i th  m e a n  E[T] = 0 .683333 a n d  coe f f i c i en t  o f  v a r i a t i o n  is C~- = 0.70. T h e  se rv ice  

d i s t r i b u t i o n  has  L a p l a c e  t r a n s f o r m :  

5 5 3 
+ 0 . 2  5 , ~l(s) =0"85 +s +s 3 + s  

1,00" 

0.75 = 

�9 t = 0.00 

~i, 1 t = 0 .44  

0 . 5 0 "  �9 t = 0 . 8 9  ' ~  �9 t = 2,30 
~- �9 t = 29.0 

B t = Infty 

0.25" 

0.00' 
0 5 I0 15 

Q Length 
Fig.  5. T h e  q u e u e  l e n g t h  d i s t r i bu t ion  o f  an  M / M / 1  q u e u e  as a f u n c t i o n  of t ime .  
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Fig. 6. The busy period C D F  of an MGE 3/MGE 2/1 queue. 

with mean E[X] = 0.266667 and coefficient of variation is C~ = 1.t25; thus the 
traffic intensity is O = 0.39. 

By differentiating the transform of the busy period distribution we found that 

0 . 1 0 " ~  
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o I 2 

a 5tDiv(Infty) 
�9 StDiv 
�9 Mean(Infty) 
n Mean 

t 
Fig. 7. The  first and second moments  of the waiting time of an MGE3/MGE2/1 queue as a 

function of time. 
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Fig. 8. The waiting time distribution of an MGE 3/MGE 2/1 queue as a function of time. 

the mean  of the busy period is E[Bp] = 0.398444 and the coefficient of variation 
is C~ = 2.327. In fig. 6 we plot the busy period CDF, in fig. 7 we plot the first 
and second moments  of the waiting time as a funtion of t. In fig. 8 we plot the 
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Fig. 9. The first and second moments  of the queue length of an MGE3/MGE2/1 queue as a 
function of time. 
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Fig. 10. The queue length distribution of MGE3/MGE 2/1 queue as a function of time. 

wai t ing t ime dis tr ibut ion as a func t ion  of  t. In  figs. 9 and  10 we plot  the first and 

second  m o m e n t s  and the dis t r ibut ion of  the q u e u e  length  as a func t ion  of  t. 
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